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Presentation Outline:

e Background on model metrics

e EXxploratory work with simulations from the
Coupled Model Intercomparison Project (CMIP)
e Mean climate
e Variability

e Cloud-radiative effects

e Where do we go from here
e The continuing need for new observations
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Motivating Questions:
e Are climate models improving? If so, how rapidly?
e Are some models more realistic than others?

e How does skill in simulating observed (past and present)
climate relate to credibility of model projections?

e Can we justify weighting models, based on metrics of skill,

to optimize use of multi-model ensembles in making
projections of climate change??
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Figure from IPCC AR4 “Summary for Policy Makers”™
Global average surface warming as simulated by climate
models for different scenarios
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Monitoring evolution of model performance:
Example from Numerical Weather Prediction

« WGNE routinely reviews still of daily forecasts

e Improvements and deficiencies in the systems identified

R.m.s. error (hPa) of surface-pressure forecasts for three and five days ahead
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What do we mean by “metrics”?

® “Metrics”, as used here, are scalar quantities that objectively
measure the quality of a model simulation, e.g.,

> Skill in simulating things we have observed
(“performance metrics’™)

® Quantify errors, but usually not designed to diagnose reasons
for model errors




Some recent work on climate model
“performance metrics”

Gleckler, P., K. Taylor, and C. Doutriaux, 2008:
Performance metrics for climate models, JGR, in press

Pincus, R., Batstone, C., Hoffman, R., K. Taylor, and P. Gleckler, 2008:
Evaluating the present-day simulation of clouds,
precipitation and radiation in climate models, JGR, accepted

Reichler, T., Kim J., 2008:
How well do coupled models simulate today’s climate?,
BAMS, in press

Williams, K., and M. Webb, 2008:
A quantitative climate performance assessment of cloud
regimes in GCMs, Climate Dynamics, submitted



What opportunities are there to evaluate models
and build confidence in model physics & dynamics?

Model’s externally “forced” responses on a range of time-scales:

> Diurnal cycle
> Annual cycle

> Volcanic eruptions, changes in solar irradiance, ...

Model’s “unforced” behavior (weather, MJO, ENSO, NAO, PDO ...)

Evaluate model representation of individual processes and
co-variability relationships

Test model ability to solve the “initial value” problem




Three statistics characterizing agreement between simulated
and observed fields can be shown: Taylor Diagram
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The larger the scale the better the model sKkill

Scale Dependence of UKMO Model Skill
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Tracking model performance in the development process

Standard Deviation (Normalized)
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The CMIP3 multi-model dataset

® 2003-2004: In anticipation of the IPCC AR4, PCMDI
assisted the World Climate Research Programme’s
Working Group on Coupled Modelling (WGCM) in the
design and coordination a new suite of experiments

® 2004-2005: Modeling groups performed simulations
and submitted standardized output to PCMDI for
dissemination

® 2005-present: Early publications form the basis of
model analysis in the IPCC AR4. To date, over 250
publications based on CMIP3




Sampling by experiment

pre-industrial control
present-day control

climate of the 20th Century (20C3M)
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External forcings applied in the “20™ Century” simulations

Model
1 CCCma-CGCM3.1(T47)
2 CCsM3
3 CNRM-CM3
4 CSIRO-Mk3.0
5 ECHAMS5/MPI-OM
6 FGOALS-g1.0
7 GFDL-CM2.0
8 GFDL-CM2.1
9 GISS-AOM
10 GISS-EH
11 GISS-ER
12 INM-CM3.0
13 IPSL-CM4
14 MIROC3.2(medres)
15 MIROC3.2(hires)
16 MRI-CGCM2.3.2
17 PCM
18 UKMO-HadCM3
19 UKMO-HadGEM1

Well-mixed GHGs - Ozone

Mineral dust

- Sea salt

[ suifate (direct)
- Land use

Bl sufate (indirect)

|:| Solar irradiance

- Black carbon

|:| Volcanic aerosols

I:l Organic carbon



Reference data sets

Fields Reference / alternate
Zonal and meridional wind ERA40 / NCEP-NCAR
Temperature,Geopotential, 2m air reanalysis
temperature, 2m humidity and 10 winds
TOA Radiative Fluxes: Outgoing ERBE /CERES
Longwave (OLR), clear-sky fluxes
Precipitable water RSS /7 NVAP
Precipitation CMAP / Xie-Arkin
Specific Humidity AIRS/ ERA40
Total cloud cover ISCCP-D2 / ISCCP-C2
Sea surface temperature (SST) HadiSST / ERSST
Wind stress (ocean) ERA40 / NCEP-NCAR
Ocean surface fluxes: latent and SOC /7 ERA40
sensible (pattern only)




Annual cycle performance metrics

® Evaluate the climatology (1980-1999) of CMIP3 20th
Century simulations with:

> — 20 well-observed atmospheric variables

> Space-scale: global domain, coarse model grid (T42:
128x64)

> Time-scale: annual cycle

® Error statistics calculated by summing over all grid cells and
the 12 climatological months




Taylor diagram for CMIP3 annual cycle global

climatology (1980-1999)

Standard Deviation

0.99

Sea Level Pressure: ERA40 reference
Total precipitation rate: CMAP reference
Total Cloud Cover: ISCCP reference

LW radiation TOA (OLR): CERES reference

Air Temperature (850 hPa): ERA40 reference
Zonal Wind (850 hPa): ERA40 reference

e VVariable dependent skill

e Multi-model mean
“superiority”




Annual cycle of global fields: Assessment of the relative
skill (§) of individual CMIP3 models.

E,

ym — RMS error in
simulating the spatial
pattern of the
climatological annual

cycle of variable V' by
model /1

where E, isthe
median of the individual

error measures, E,
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Exploring the value and limitations of a single “performance index”.

®* From performance portrait recall: Seo
E

Let the “performance index” be the mean of S, over all the variables.
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Is the “performance index” meaningful/useful?

Little correlation between simulation of individual fields and an index.

Ranking of models will depend on which metrics are included in index.

Performance Indices
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Premature to unduly emphasize a single performance index

® Fails to capture the complex error structure of models

® Depends on a number of factors (variable, region, time-scale,
etc.)

® Invites simplistic interpretations of the relative value of specific
models - the emphasis should be towards correct
representation of the physics.

* Optimal weighting of different metrics contributing to a
performance index likely depends on the application




Do we know what is most important for reliable projections?

No, but ...
® Cloud-radiative effects are an obvious place to start

® Cloud-Feedback Model Intercomparison Project (CFMIP):

Objective of CFMIP-2 is to make an improved assessment of:

> climate change cloud feedbacks by making progress in the
(1) evaluation of clouds simulated by climate models and the
(2) understanding of cloud-climate feedback processes.

> From a practical standpoint — participating modeling groups provide
“ISCCP simulator” output from standard experiments
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Define principal clusters of cloud regimes from observations
(courtesy Yuying Zhang and Steve Klein of PCMDI)

Cloud Mask [] Ldar only I radar only [] both

Height (km)

0 600 1200 1800 2400 3000

»Combined CloudSat and CALIPSO
data provide most accurate description
on vertical structure of cloud fields
(Mace et al. 2007&2008)

»Patterns of cloud clusters defined using
combined dataset (Zhang et al. 2007)
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Goal: evaluate GCM simulations using combined radar and lidar data

Schematic of the CFMIP

ISCCP/CloudSat/ CALIPSO simulator A sample: apply the radar simulator to
(CICCS) package the NCAR’s CAM3 simulations
sub-grid sampling
Model output/simulator input SCOPS i e —
/ (Webb et al. 2001) 21
HTP RH "
TCA CCA / |, PREC_SCOPS

lev

15
Mixing ratio of cloud /
hydrometears / \I\J{ 12

precipitation flux

C3S simulator 6
/ \ 3
. q a 0-f ! 1 !
Radar simulator Lidar simulator 50 45 -40 -35 30 25 20 -5 -0 -5 0 5 1 15 20

\ / dBz

Statistical summary

Sl
0.00 0.01 002 Relative Frequenay of Ocewsgence o.06 0.07 0.08

» Development of CICCS is in collaboration with the Hadley Center
and LMD (France), CSU, and UW

» Embed the CICCS in GCMs and produce the output similar to the
observations

» Assess model performance using clustering analysis




Beyond the mean climate . . .

® Variability also important simulating climate change
® Extensive diagnostic approaches exist

® Development of variability metrics in its infancy




Monthly anomalies: Variance (model/reference)

A “Model Variability Index”:
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Model Skill:

Mean climate vs. variability

Variability Skill
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SST anomalies: PDO vs AMO domains

Increasing skill

PDO domain
[

AMO domain

A

Increasing skill




Some conclusions: performance metrics gauging relative skill

Mean climate and variability relative skill is regionally dependent
Weak relationship between skill in simulating mean climate and variability

Premature to unduly emphasize a single performance index - fails to
capture the complex error structure of models

Optimal weighting of different metrics contributing to a performance index
likely depends on the application

For the moment, ruling out models based on minimal requirements seems
most justifiable




How have metrics helped us to date ?

® Force us to be more quantitative in our evaluation of models
® Enable us to track changes in model performance
® Help summarize the relative merits of different models

® Provide considerable evidence for the general superiority of the multi-
model “mean simulation”




Looking ahead:

Community working to develop a “basket” of metrics
spanning a wide range of simulated processes and
phenomenon

Establish a minimum set of routine performance metrics,
minimizing redundancy

Explore relationships between skill in simulating present
climate future projections

The more state-of-the-art observations to be incorporated
Into this work the better...
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